120,886 views
37 votes
37 votes
Find the perimeter of the triangle whose vertices are the following specified points in the plane.

Find the perimeter of the triangle whose vertices are the following specified points-example-1
User Willwade
by
2.3k points

1 Answer

14 votes
14 votes

Let A = (1,-5), B = (2,9) and C = (-6,-8). Solve first for AB, BC, and CA.


\begin{gathered} \text{Solve for }\overline{AB} \\ \overline{AB}=\sqrt[]{(1-2)^2+(-5-9)^2} \\ \overline{AB}=\sqrt[]{(-1)^2+(-14)^2} \\ \overline{AB}=\sqrt[]{1+196} \\ \overline{AB}=\sqrt[]{197} \\ \overline{AB}\approx14.04\text{ units} \end{gathered}
\begin{gathered} \text{Solve for }\overline{BC} \\ \text{ }\overline{BC}=\sqrt[]{(2-(-6))^2+(9-(-8))^2} \\ \text{ }\overline{BC}=\sqrt[]{(8)^2+(17)^2} \\ \text{ }\overline{BC}=\sqrt[]{(64)^{}+(289)^{}} \\ \text{ }\overline{BC}=\sqrt[]{353^{}} \\ \overline{BC}\approx18.79\text{ units} \end{gathered}
\begin{gathered} \text{Solve for }\overline{CA} \\ \text{ }\overline{CA}=\sqrt[]{(-6-1)^2+(-8-(-5))^2} \\ \text{ }\overline{CA}=\sqrt[]{(-7)^2+(-3)^2} \\ \text{ }\overline{CA}=\sqrt[]{49+9} \\ \text{ }\overline{CA}=\sqrt[]{58} \\ \text{ }\overline{CA}\approx7.62\text{ units} \end{gathered}

Now solve for Perimeter


\begin{gathered} P=\overline{AB}+\overline{BC}+\overline{CA} \\ P=14.04+18.79+7.62 \\ P=40.45\text{ units} \end{gathered}

Therefore, the perimeter of the triangle whose points in the plane are (1,-5), (2,9) and (-6,-8) is 40.45 units.

User Ragoler
by
2.8k points