47.6k views
7 votes
F(x)= (5x/sinx) - 3xsinx Solve for dy/dx at x = Pi over 2

User Ifan Iqbal
by
6.4k points

1 Answer

3 votes

Answer:


((dy)/(dx))x_{= (\pi )/(2) } = f^(1) ((\pi )/(2) ) =2

Explanation:

Step(i):-

Given that


f(x) = (5x)/(sinx) -3xsinx

Apply (UV )¹ = UV¹+VU¹


(d)/(dx) ((U)/(V) ) = (V U^(l) -VU^(l) )/(V^(2) )

Step(ii):-


f^(1) (x) = 5(sin x(1)-x(cos x))/(sin^(2)x ) - 3(x cos x + sin x(1))

put
x = (\pi )/(2)


f^(1) ((\pi )/(2) ) = 5(sin (\pi )/(2) (1)-(\pi )/(2) (cos (\pi )/(2) ))/(sin^(2)((\pi )/(2) ) ) - 3((\pi )/(2) cos (\pi )/(2) + sin((\pi )/(2)) (1))

we know that


cos((\pi )/(2)) = 0


sin((\pi )/(2) ) = 1


f^(l) ((\pi )/(2) ) = (5(1-0))/(1) -3(0+1)


f^(1) ((\pi )/(2) ) = 5-3 =2

Final answer:-


((dy)/(dx))x_{= (\pi )/(2) } = f^(1) ((\pi )/(2) ) =2

User BlinkyTop
by
5.3k points