343,904 views
38 votes
38 votes
DRAG each expression to show if it is equivalent to 7^5, 5^7, 5x7, or none.

DRAG each expression to show if it is equivalent to 7^5, 5^7, 5x7, or none.-example-1
User Tautologistics
by
2.5k points

1 Answer

19 votes
19 votes

The expand form of exponent is :


\begin{gathered} a* a* a* a* a* a=a^6 \\ \text{Number of the times the digit get multiply is equal to the exponent value,} \end{gathered}

The expand form of Multiplication is :


\begin{gathered} a+a+a+a+a+a=6a \\ \text{Number of the time the digit gets added multiply that number with the digit} \end{gathered}

So,

1). Expression :


\begin{gathered} 5*5*5*5*5*5*5 \\ \text{Apply the statement of Exponent} \\ 5*5*5*5*5*5*5=5^7 \end{gathered}

So, the first expression drop on the second block,

2). Expression :


\begin{gathered} 7*7*7*7*7 \\ \text{Apply the statement of Exponent } \\ 7*7*7*7*7=7^5 \end{gathered}

So, the second expression drop in the first block

3). Expression :


\begin{gathered} 5+5+5+5+5+5+5 \\ \text{apply the expression of multiplication} \\ 5+5+5+5+5+5+5=5*7 \end{gathered}

So, the third expression drop in the third block

4). Expression :


\begin{gathered} 5*5*5*5*5 \\ \text{Apply the statement of Multiplication} \\ 5*5*5*5*5=5^5 \end{gathered}

The fourth

User FelHa
by
2.6k points