Answer:
![x = 16.5](https://img.qammunity.org/2022/formulas/mathematics/college/gu0fiqji14zrslb5iml3dukvw9c3hzcwn5.png)
Explanation:
There is no number 7. The only complete question here is number 12 and the solution is as follows:
The attached figure is a right-angled triangle and the given parameters are:
![\theta = 70^(\circ)](https://img.qammunity.org/2022/formulas/mathematics/college/r1uz0pwcwl91k0xhln1olvimrs1c2vcq2m.png)
![Opposite = x](https://img.qammunity.org/2022/formulas/mathematics/college/1wj4ocyzvw1btfsy2qh8sqwhuhee4bn97x.png)
![Adjacent = 6](https://img.qammunity.org/2022/formulas/mathematics/college/n0hjvqum5bq6yufsmrntfmo2ooz558nqmx.png)
Required
Find x
The relationship between the given parameters is:
![tan(\theta) = (Opposite)/(Adjacent)](https://img.qammunity.org/2022/formulas/mathematics/college/fjuizggzrwurfz4o10im4c0jlyte3d22ox.png)
This gives:
![tan(70^(\circ)) = (x)/(6)](https://img.qammunity.org/2022/formulas/mathematics/college/ezzhqshi1ijtk9qglvaoqhz646d97sdgjq.png)
Multiply both sides by 6
![6 * tan(70^(\circ)) = (x)/(6)*6](https://img.qammunity.org/2022/formulas/mathematics/college/7ktv1gxck3cxrxlod4psuq37o1wjrwjcuf.png)
![6 * tan(70^(\circ)) = x](https://img.qammunity.org/2022/formulas/mathematics/college/o3zp12ktgh28tc3h1f07tpfrstz56btngx.png)
![x = 6 * tan(70^(\circ))](https://img.qammunity.org/2022/formulas/mathematics/college/jtgqtjfuj2v61jn1vnbfdtzf04h5tlgqby.png)
![tan(70^(\circ)) = 2.7474](https://img.qammunity.org/2022/formulas/mathematics/college/h5x1l483w8htnxwuefewcbuu37cg4fiw5a.png)
So, we have:
![x = 6 * 2.7474](https://img.qammunity.org/2022/formulas/mathematics/college/pcsk27aqmpa8yzt0szanygstlavnsw0qcx.png)
![x = 16.4844](https://img.qammunity.org/2022/formulas/mathematics/college/js29xradyn0y811gyuw5xflzjtcvri6k3i.png)
-- approximated