194k views
16 votes
Determine if the given equations are parallel, perpendicular, or neither
4y=3x-4 and 4x+3y=-6

User Sandric
by
8.8k points

1 Answer

11 votes

Answer:

Perpindicular

Explanation:

Solve each equation for y, or point Slope form.

y = mx + b

4y = 3x - 4 divide both sides by 4 to isolate the y.

y = 3/4x - 1

The second equation.

4x + 3y = - 6 subtract 4x from both sides

3y = -4x - 6 divide both sides by 3

y = -4/3 - 2

If you visualize line 1 having a Slope of 3/4, that is, for every 4 we move in the positive x direction, y will increase by 3, it slopes up from left to right crossing the y axis at (0,-1). The second line moves 3 in the positive x direction and decreases in y by 4, it slopes down from left to right crossing the y axis at (0,-2}.

Because the two lines have negative inverse slopes they are perpendicular. 3/4x and - 4/3x

User Tien Hoang
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories