Answer:
![\boxed {\boxed {\sf About \ 5 \ centimeters }}](https://img.qammunity.org/2022/formulas/mathematics/college/nbc1b7ix6l57jcgbmegq51229u3ji4awim.png)
Explanation:
The area of a circle is found using this formula:
![a= \pi r^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/zw2rsi8puva2454hek1m54f3ta85dd44xd.png)
We know the area of the disc is 78.53 square centimeters and 3.14 is being used for pi.
![78.53 \ cm^2 = (3.14) r^2](https://img.qammunity.org/2022/formulas/mathematics/college/fyctiyfao5ziyi5juii48v3i65ytaxccoh.png)
We are solving for the radius, so we must isolate the variable r.
3.14 and r² are being multiplied. The inverse of multiplication is division, so divide both sides by 3.14
![(78.53 \ cm^2)/(3.14) = ((3.14) r^2)/(3.14)](https://img.qammunity.org/2022/formulas/mathematics/college/baydqtowulswc4t3ny8qw4nr3gpaotx7ni.png)
![(78.53 \ cm^2)/(3.14) =r^2](https://img.qammunity.org/2022/formulas/mathematics/college/1avi7ej2e8kga5fk1yau2u048u75u80w71.png)
![25.0095541 \ cm^2 = r^2](https://img.qammunity.org/2022/formulas/mathematics/college/iiivpvd1662h5x3s4xg1953y3fug7lfc8h.png)
r is being squared, so we must take the square root of both sides.
![√(25.0095541 \ cm^2) = \sqrt {r^2}](https://img.qammunity.org/2022/formulas/mathematics/college/6wlc9yskmq4se53yd0b3l31x4pke0pei1d.png)
![√(25.0095541 \ cm^2) = r](https://img.qammunity.org/2022/formulas/mathematics/college/4wktl4batkjfuzfxhr7r3qjjtuq5e44kv6.png)
![5.00095532 \ cm = r \\5 \ cm \approx r](https://img.qammunity.org/2022/formulas/mathematics/college/yd339ezdhqxkmnd84lowxdd6c4gapz1z2k.png)
The radius of the disc is about 5 centimeters.