18,045 views
43 votes
43 votes
Simplify the given expression:csc(tan^-1)(w)=

User Ladar
by
3.4k points

1 Answer

18 votes
18 votes

The problem is given to be:


\csc (\tan ^(-1)(w))

Let


\begin{gathered} \theta=\tan ^(-1)w \\ \therefore \\ \tan \theta=w \end{gathered}

We can write the above to be:


\tan \theta=(w)/(1)

Using the above, we can draw a right-angled triangle as shown below:

To find the value of x, we can use the Pythagorean Theorem:


\begin{gathered} x^2=w^2+1^2 \\ x=\sqrt[]{w^2+1} \end{gathered}

Recall:


\csc (\tan ^(-1)(w))=\csc \theta

The identity of cosec is given to be:


\csc \theta=(1)/(\sin \theta)

From the triangle,


\sin \theta=(w)/(x)=\frac{w}{\sqrt[]{w^2+1}}

Therefore,


\csc \theta=\frac{\sqrt[]{w^2+1}}{w}

Therefore, the answer is given to be:


\csc (\tan ^(-1)(w))=\frac{\sqrt[]{w^2+1}}{w}

Simplify the given expression:csc(tan^-1)(w)=-example-1
User Loren Pechtel
by
2.6k points