Answer:
![\boxed {\boxed {\sf f(-3)= -21}}](https://img.qammunity.org/2022/formulas/mathematics/college/2apu4p1eo3k38uda0dj797bnmtpthq3o2j.png)
Explanation:
We are given the function:
![f(x)= -x^2-12](https://img.qammunity.org/2022/formulas/mathematics/college/4rgiwd7mv1hpik1ocngcyatz6ol64b9opm.png)
We want to find f(-3), so we must substitute -3 in for x.
![f(-3)= -(-3)^2 -12](https://img.qammunity.org/2022/formulas/mathematics/college/arqcdgaty0434dpm6x3z38ehelw3bzbpgt.png)
Solve according to PEMDAS: Parentheses, Exponents, Multiplication, Addition, Subtraction.
Solve the exponent.
![f(-3)= -(9)-12](https://img.qammunity.org/2022/formulas/mathematics/college/k0cr75dwlrtydhpud4vnepvqb4rkz2fkah.png)
Distribute the -1 in.
![f(-3)= -9-12](https://img.qammunity.org/2022/formulas/mathematics/college/f4huf6rkbp6c3hhjxqq41emkrfwb3iov80.png)
Subtract.
![f(-3)= -21](https://img.qammunity.org/2022/formulas/mathematics/college/w2wkveeq22nwvl78lkrefmcbcytpgpkhpz.png)
For the function -x²-12, f(-3) is equal to 21