186k views
4 votes
Urgent!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Carlos says that the XYZ is not congruent to PQR because there is no SSA theorem or postulate.



In two or more complete sentences, explain why or why not Carlos is correct. Justify your answer using triangle congruency postulates, theorems, and definitions.

Urgent!!!!!!!!!!!!!!!!!!!!!!!!!!!! Carlos says that the XYZ is not congruent to PQR-example-1
User Eydrian
by
7.5k points

2 Answers

4 votes

Answer:

Carlos is Correct

Explanation:

Carlos is correct. Since the angles P and X are not included between PQ and RQ and XY and YZ, the SAS postulate cannot be used, since it states that the angle must be included between the sides. Unlike with ASA, where there is the AAS theorem for non-included sides, there is not SSA theorem for non-included angles, so the triangles cannot be proven to be congruent.

___________________________________________________

I AM ALWAYS HAPPY TO HELP :)

User Nbsp
by
7.9k points
4 votes

Answer:

Since we don't know the length of sides PR and XZ, the triangles can't be congruent by the SSS theorem or the SAS theorem, and since we don't know the measure of angles Y and Q, the triangles can't be congruent by the ASA theorem, the SAS theorem or the AAS theorem. Therefore, Carlos is correct.

Explanation:



User TudorIftimie
by
6.6k points