15.6k views
0 votes
Solve the exponential equation 9^8x = 27

User TPoy
by
8.6k points

2 Answers

5 votes
The answer is x=3/16
User ConvolutionBoy
by
8.2k points
5 votes

Answer:


x=(3)/(16)

Explanation:

Given : Exponential function
9^(8x)=27

We have to solve the given exponential equation.

Consider the given exponential function
9^(8x)=27


\mathrm{Convert\:}9^(8x)\mathrm{\:to\:base\:}3


9^(8x)=\left(3^2\right)^(8x)

Function becomes,


\left(3^2\right)^(8x)=27

Convert 27 to base 3, we have,


\left(3^2\right)^(8x)=3^3

Apply exponent rule,
\left(a^b\right)^c=a^(bc)

We have,
3^(2\cdot \:8x)=3^3


\mathrm{If\:}a^(f\left(x\right))=a^(g\left(x\right))\mathrm{,\:then\:}f\left(x\right)=g\left(x\right)

We have,


2\cdot \:8x=3

Simplify, we have,


16x=3

Thus,
x=(3)/(16)

User Puriney
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories