15.6k views
0 votes
Solve the exponential equation 9^8x = 27

User TPoy
by
8.6k points

2 Answers

5 votes
The answer is x=3/16
User ConvolutionBoy
by
8.2k points
5 votes

Answer:


x=(3)/(16)

Explanation:

Given : Exponential function
9^(8x)=27

We have to solve the given exponential equation.

Consider the given exponential function
9^(8x)=27


\mathrm{Convert\:}9^(8x)\mathrm{\:to\:base\:}3


9^(8x)=\left(3^2\right)^(8x)

Function becomes,


\left(3^2\right)^(8x)=27

Convert 27 to base 3, we have,


\left(3^2\right)^(8x)=3^3

Apply exponent rule,
\left(a^b\right)^c=a^(bc)

We have,
3^(2\cdot \:8x)=3^3


\mathrm{If\:}a^(f\left(x\right))=a^(g\left(x\right))\mathrm{,\:then\:}f\left(x\right)=g\left(x\right)

We have,


2\cdot \:8x=3

Simplify, we have,


16x=3

Thus,
x=(3)/(16)

User Puriney
by
7.4k points