Answer: The correct option is f(x) has three real roots and two imaginary roots.
Step-by-step explanation:
It is given that the roots of fifth degree polynomial function are -2, 2 and 4+i.
Since he degree of f(x) is 5, therefore there are 5 roots of the function either real or imaginary.
According to the complex conjugate root theorem, if a+ib is a root of a polynomial function f(x), then a-ib is also a root of the polynomial f(x).
Since 4+i is a root of f(x), so by complex conjugate rot theorem 4-i is also a root of f(x).
From the the given data the number of real roots is 2 and the number of 2. The number of complex roots is always an even number, so the last root must be a real number.
Therefore, the correct option is f(x) has three real roots and two imaginary roots.