160k views
2 votes
Use integration by parts to integrate sin2x between pi and 0

1 Answer

5 votes

Answer:


\displaystyle \int\limits^0_(\pi) {\sin (2x)} \, dx = 0

General Formulas and Concepts:

Calculus

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^0_(\pi) {\sin (2x)} \, dx

Step 2: Integrate Pt. 1

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = 2x
  2. [u] Differentiate:
    \displaystyle du = 2 \ dx
  3. [Bounds] Switch:
    \displaystyle \left \{ {{x = 0 ,\ u = 2(0) = 0} \atop {x = \pi ,\ u = 2 \pi}} \right.

Step 3: Integrate Pt. 2

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^0_(\pi) {\sin (2x)} \, dx = (1)/(2) \int\limits^0_(\pi) {2 \sin (2x)} \, dx
  2. [Integral] U-Substitution:
    \displaystyle \int\limits^0_(\pi) {\sin (2x)} \, dx = (1)/(2) \int\limits^0_(2 \pi) {\sin u} \, du
  3. Trigonometric Integration:
    \displaystyle \int\limits^0_(\pi) {\sin (2x)} \, dx = (1)/(2)(-\cos u) \bigg| \limits^0_(2 \pi)
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^0_(\pi) {\sin (2x)} \, dx = (1)/(2)(0)
  5. Simplify:
    \displaystyle \int\limits^0_(\pi) {\sin (2x)} \, dx = 0

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Cels
by
7.7k points