M x = 1/2 p ∫ ( f ( x )² - g ( x )² ) d x
f ( x ) = √( 1 - x²), g ( x ) = - 2
![M x = 1/2 * 5 \int\limits^1_(-1) (- x^(2) -3)\, dx= \\ =-5/2 * [ x^(3)/3 + 3 x]^1 _(-1) = \\ =-5/2 * (1/3+3+1/3+3)=](https://img.qammunity.org/2017/formulas/mathematics/high-school/ixv9dbeiv8kf7vh9z4r6lzluld42sz0lk5.png)
= - 50/3
My = p ∫ x * ( f ( x ) ) dx
My = p ∫ x ( √(1+x²)) dx
Substitution: 1 - x² = u, x dx = - du/2
M x = - 50/3, M y = 0![M = 5 * \int\limits^1_(-1) { (\sqrt{1+ x^(2) }+2)} \, dx = \\ =5* [1/2 \sqrt{1+ x^(2) } *x + 2 x + 1/2 *sinh ^(-1) x]^1_(-1)](https://img.qammunity.org/2017/formulas/mathematics/high-school/j2t59h6tnfadph9angnoj7ljhx1qe7y1tm.png)
M ≈ 5 * 6.3 ≈ 31.2
x = M y / M = 0 / 31.5 = 0
y = M x / M = -50/3 : 31.5 ≈ - 0.529
The center of mass is
( 0, -0.529 )