74.6k views
4 votes
How can I factorise (2x cubed - 5x + 3) ?

2 Answers

5 votes
2x³ - 5x +3

P = Finding the divisors of the constant 3 : 1 and 3
Q = Finding the divisors of the master coefficient 2 : 1 and 2

Now verify the probably roots: +- p/q
+- 1/1 , +-1/2 , +-3/1 , +-3/2

+-1 , +-1/2 , +-3 , +- 3/2

x=1 is root: 2x³-5x+3 = 2(1)³-5(1)+3 = 0

If x=1 is root, so x-1=0

Divinding by (x-1)

2x³+0x²-5x+3 | x-1
-2x³+2x² 2x² +2x-3
0 +2x²-5x
-2x²+2x
0 -3x +3
3x - 3
0 0

So,
2x³-5x+3 = (x-1)(2x²+2x-3)

(x-1)(2x²+2x-3)
User Estragon
by
8.5k points
2 votes

2x^3-5x+3=2x^3-2x-3x+3\\\\=2x(x^2-1)-3(x-1)\\\\=2x\underbrace{(x^2-1^2)}_(use\ (*))-3(x-1)\ \ \ |(*)\ a^2-b^2=(a-b)(a+b)\\\\=2x\underbrace{(x-1)}_((**))(x+1)-3\underbrace{(x-1)}_((**))\\\\=(x-1)[2x(x+1)-3]\\\\=(x-1)\underbrace{(2x^2+2x-3)}_((***))\\\\(***)\ 2x^2+2x-3\to a=2;\ b=2;\ c=-3\\\\x=(b^2\pm√(b^2-4ac))/(2a)


therefore\\x=(-2\pm√(2^2-4(2)(-3)))/(2(2))=(-2\pm√(4+24))/(4)=(-2\pm√(28))/(4)=(-2\pm√(4\cdot7))/(4)=(-2\pm2\sqrt7)/(4)\\\\=(-1\pm\sqrt7)/(2)\\\\so,\ the\ answer:\\\\(x-1)\cdot2\left(x-(-1-\sqrt7)/(2)\right)\left(x-(-1+\sqrt7)/(2)\right)\\\\=\boxed{(x-1)(2x+1+\sqrt7)\left(x+(1-\sqrt7)/(2)\right)}=\boxed{(1)/(2)(x-1)(2x+1+\sqrt7)(2x+1-\sqrt7)}
User Zielu
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories