148k views
3 votes
Find all solutions in the region [0,2pi) for the equation cos^2(2x)-sin^2(2x)=0

User Iesha
by
7.7k points

1 Answer

1 vote

\cos^(2)(2x)-\sin^(2)(2x)=0

\rightarrow \sin^(2)(2x)=\cos^(2)(2x)

\rightarrow (\sin^(2)(2x))/(\cos^(2)(2x))=1

\rightarrow \tan^(2)(2x)=1

\rightarrow \tan(2x)=\pm 1


2x can range anywhere in
[0, 4\pi)
So:

\rightarrow 2x=(\pi)/(4), (3\pi)/(4), (5\pi)/(4), (7\pi)/(4), (9\pi)/(4), (11\pi)/(4), (13\pi)/(4), (15\pi)/(4)

\rightarrow x=(\pi)/(8), (3\pi)/(8), (5\pi)/(8), (7\pi)/(8), (9\pi)/(8), (11\pi)/(8), (13\pi)/(8), (15\pi)/(8)
User Mad Matts
by
7.6k points

No related questions found