340,111 views
23 votes
23 votes
Evaluate the indefinite integral, using a trigonometric substitution and a triangle to express the answer in terms of x. Use trig substitution to fully convert the integral to a 0-integral. You do not have to compute the 0-integral.

Evaluate the indefinite integral, using a trigonometric substitution and a triangle-example-1
User Mmlooloo
by
2.8k points

1 Answer

17 votes
17 votes

we have the expression


\int \frac{x^2}{(1+9x^2)^{((3)/(2))}}dx

using a trigonometric substitution

Let


\begin{gathered} x=(\tan u)/(3) \\ u=\arctan (3x) \\ dx=(\sec ^2u)/(3)du \end{gathered}

substitute in the original expression


\int \frac{\sec ^2u\cdot\tan ^2u}{27(\tan ^2u+1)^{((3)/(2))}}du

Remember that


\tan ^2u+1=\sec ^2u
\int \frac{\sec^2u\cdot\tan^2u}{27(\tan^2u+1)^{((3)/(2))}}du=(1)/(27)\int \frac{\tan ^2u}{\sec u^{}}du
(1)/(27)\int \frac{\tan^2u}{\sec u^{}}du=(1)/(27)\int (\cos u\cdot\tan ^2u)^{}du
(1)/(27)\int (\cos u\cdot\tan ^2u)^{}du=(1)/(27)\int \cos u\cdot(\sec ^2-1)^{}du
(1)/(27)\int \cos u\cdot(\sec ^2-1)^{}du=(1)/(27)\int (\sec u-\cos u)^{}du
(1)/(27)\int (\sec u-\cos u)^{}du=(1)/(27)\int \sec u^{}du-(1)/(27)\int \cos u^{}du
(1)/(27)\int \sec u^{}du-(1)/(27)\int \cos u^{}du=(1)/(27)\lbrack\ln (\tan u+\sec u)-\sin u\rbrack

Remember that


u=\arctan (3x)
\tan (\arctan (3x))=3x

using the triangle

Find out the value of H

Applying the Pythagorean Theorem

H^2=(3x)^2+1^2

H^2=9x^2+1

H=√(9x^2+1)


\begin{gathered} \sin u=\frac{3x}{\sqrt[]{9x^2+1}} \\ \sec u=\sqrt[]{9x^2+1} \end{gathered}

substitute


(1)/(27)\lbrack\ln (\tan u+\sec u)-\sin u\rbrack=(1)/(27)\lbrack\ln (3x+\sqrt[]{9x^2+1})-\frac{3x}{\sqrt[]{9x^2+1}}\rbrack

simplify


(1)/(27)\lbrack\ln (3x+\sqrt[]{9x^2+1})-\frac{3x}{\sqrt[]{9x^2+1}}\rbrack=\frac{\ln (3x+\sqrt[]{9x^2+1})}{27}-\frac{x}{9\sqrt[]{9x^2+1}}+C

therefore

the answer is


\frac{\ln(3x+\sqrt[]{9x^2+1})}{27}-\frac{x}{9\sqrt[]{9x^2+1}}+C

Evaluate the indefinite integral, using a trigonometric substitution and a triangle-example-1
User Kyle Redfearn
by
3.2k points