117,171 views
31 votes
31 votes
Find the terminal point on the unit circle determined byradians.Use exact values, not decimal approximations.

Find the terminal point on the unit circle determined byradians.Use exact values, not-example-1
User Colebrookson
by
1.9k points

1 Answer

19 votes
19 votes

\begin{gathered} \text{Answer: x = }\frac{\sqrt[]{2}}{2}\text{ , y = -}\frac{\sqrt[]{2}}{2} \\ (\frac{\sqrt[]{2}}{2\text{ }}\text{ , -}\frac{\sqrt[]{2}}{2}) \end{gathered}

Step-by-step explanation:


\begin{gathered} Given\text{ the radius of the circle be }(7\pi)/(4) \\ x\text{ - coordinate = cos }\theta \\ \text{y - coordinate = sin}\theta \\ x\text{ = cos}(7\pi)/(4)\text{ , y = sin }(7\pi)/(4) \\ \text{let 1}\pi\text{ = 180 degre}es \\ x\text{ = cos}\frac{7\cdot\text{ 180}}{4}\text{ , y = sin }\frac{7\cdot\text{ 180}}{4} \\ \text{x = cos }(1260)/(4)\text{ , y = sin }(1260)/(4) \\ \text{x = cos 315, y = sin 315} \\ \text{x = }\frac{\sqrt[]{2}}{2}\text{ , y = -}\frac{\sqrt[]{2}}{2} \end{gathered}

User Amith
by
2.8k points