Answer:
a. 0.5434
b. 0.5746
c. 0.2957
d. 0.0902
Step-by-step explanation:
To find each probability we need to use the normal distribution table that is accumulated to the left, so each probability is equal to
P(-1.80 < z < 0.20) = P( z < 0.20) - P( z < -1.80)
P(-1.80 < z < 0.20) = 0.5793 - 0.0359
P(-1.80 < z < 0.20) = 0.5434
P(-0.40 < z < 1.40) = P( z < 1.40) - P( z < -0.40)
P(-0.40 < z < 1.40) = 0.9192 - 0.3446
P(-0.40 < z < 1.40) = 0.5746
P(0.25 < z < 1.25) = P(z < 1.25) - P(z < 0.25)
P(0.25 < z < 1.25) = 0.8944 - 0.5987
P(0.25 < z < 1.25) = 0.2957
P(-0.90 < z < -0.60) = P(z < -0.60) - P(z < -0.90)
P(-0.90 < z < -0.60) = 0.2743 - 0.1841
P(-0.90 < z < -0.60) = 0.0902
Therefore, the answers are
a. 0.5434
b. 0.5746
c. 0.2957
d. 0.0902