460,497 views
19 votes
19 votes
Simplify the expression using trigonometric identities (csc θ – csc θ · cos2 θ).A) sin2 θB) sin θ · tan θC) sin3 θD) sin θ

User Aivar Paalberg
by
3.4k points

1 Answer

23 votes
23 votes

Given the expression;


\csc \theta-\csc \theta\cdot\cos ^2\theta

This can be simplified as;


\csc \theta-\csc \theta\cdot\cos ^2\theta=\csc \theta(1-\cos ^2\theta)

Recall the identity that;


\begin{gathered} \sin ^2\theta+\cos ^2\theta=1 \\ \sin ^2\theta=1-\cos ^2\theta \end{gathered}

Then, we have;


\csc \theta-\csc \theta\cdot\cos ^2\theta=\csc \theta(\sin ^2\theta)

Also, recall that;


\csc \theta=(1)/(\sin \theta)

So, we have;


\begin{gathered} \csc \theta-\csc \theta\cdot\cos ^2\theta=\csc \theta(\sin ^2\theta) \\ \csc \theta-\csc \theta\cdot\cos ^2\theta=(1)/(\sin \theta)(\sin ^2\theta) \\ \csc \theta-\csc \theta\cdot\cos ^2\theta=\sin \theta \end{gathered}

CORRECT OPTION: D

User Chase R Lewis
by
2.5k points