84.3k views
1 vote
[8.06] Which polynomial is a perfect square trinomial?

49x2 − 28x + 16

4a2 − 20a + 25

25b2 − 20b − 16

16x2 − 24x − 9

2 Answers

1 vote
4a² − 20a + 25.    is the answer.     
User Thosphor
by
8.7k points
5 votes

Answer:
4a^2 - 20a + 25

Explanation:

A binomial
ax^2+bx+c=0 is called perfect square trinomial

if
b^2 = 4ac is satisfied.

For
49x^2 - 28x + 16

a = 49, b = -28 and c = 16,


(-28)^2=784


4* 49* 16 =3136


\implies (-28)^2\\eq 4(49)(16)

Thus,
49x^2 - 28x + 16 is not a perfect square trinomial.

For
4a^2 - 20a + 25

a = 4, b = -20 and c = 25,


(-20)^2=400


4* 4* 25 =400


\implies (-20)^2\\eq 4(4)(25)

Thus,
4a^2 - 20a + 25 is a perfect square trinomial.

For
25b^2 - 20b - 16

a = 25, b = -20 and c = -16,


(-20)^2=400


4* 25* 16 =-1600


\implies (-20)^2\\eq 4(25)(16)

Thus,
25b^2 - 20b - 16 is not a perfect square trinomial.

For
16x^2 - 24x - 9

a = 16, b = -24 and c = -9,


(-24)^2=576


4* 16* -9 =-576


\implies (-24)^2\\eq 4(16)(-9)

Thus,
16x^2 - 24x - 9 is not a perfect square trinomial.

User Joe Hallenbeck
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories