84.3k views
1 vote
[8.06] Which polynomial is a perfect square trinomial?

49x2 − 28x + 16

4a2 − 20a + 25

25b2 − 20b − 16

16x2 − 24x − 9

2 Answers

1 vote
4a² − 20a + 25.    is the answer.     
User Thosphor
by
8.5k points
5 votes

Answer:
4a^2 - 20a + 25

Explanation:

A binomial
ax^2+bx+c=0 is called perfect square trinomial

if
b^2 = 4ac is satisfied.

For
49x^2 - 28x + 16

a = 49, b = -28 and c = 16,


(-28)^2=784


4* 49* 16 =3136


\implies (-28)^2\\eq 4(49)(16)

Thus,
49x^2 - 28x + 16 is not a perfect square trinomial.

For
4a^2 - 20a + 25

a = 4, b = -20 and c = 25,


(-20)^2=400


4* 4* 25 =400


\implies (-20)^2\\eq 4(4)(25)

Thus,
4a^2 - 20a + 25 is a perfect square trinomial.

For
25b^2 - 20b - 16

a = 25, b = -20 and c = -16,


(-20)^2=400


4* 25* 16 =-1600


\implies (-20)^2\\eq 4(25)(16)

Thus,
25b^2 - 20b - 16 is not a perfect square trinomial.

For
16x^2 - 24x - 9

a = 16, b = -24 and c = -9,


(-24)^2=576


4* 16* -9 =-576


\implies (-24)^2\\eq 4(16)(-9)

Thus,
16x^2 - 24x - 9 is not a perfect square trinomial.

User Joe Hallenbeck
by
7.9k points