128k views
2 votes
Simplify and write in radical form:
((x^3 * y^-2) / xy)^-(1/5)

2 Answers

4 votes

Answer:


\sqrt[5]{((y^3)/(x^2))}

Explanation:


((x^3* y^(-2))/(xy))^{(-1)/(5)}

Now we will use the quotient rule of exponent which is given by


(x^a)/(x^b)=a^(a-b)

Using this property, we get


({x^(3-1)* y^(-2-1)})^{(-1)/(5)}

On simplifying, we get


({x^(2)* y^(-3)})^{(-1)/(5)}

Now, use the property,
x^(-a)=(1)/(x^a)


((x^2)/(y^3))^{(-1)/(5)}

Now, we can use the rule
x^(1/a)=\sqrt[a]{x}


((y^3)/(x^2))^{(1)/(5)}\\\\=\sqrt[5]{((y^3)/(x^2))}

User Jack Bonneman
by
8.2k points
0 votes
The answer is
\sqrt[5]{(x^(2))/(y^(3))}


( ( x^(3)* y^(-2) )/(xy))^{ (1)/(5) } \\ \\ ( x^(a) )/( x^(b) ) = x^(a-b) \\ \\ ( ( x^(3)* y^(-2) )/(xy))^{ (1)/(5) } = ( x^(3-1)y^(-2-1) ) ^{ (1)/(5) } = ( x^(2)y^(-3) ) ^{ (1)/(5) } \\ \\ x^(-a) = (1)/( x^(a) ) \\ \\ ( x^(2)y^(-3) ) ^(2)= ((x^(2))/(y^(3)) )^{ (1)/(5) } \\ \\ x^{ (a)/(b) } = \sqrt[b]{ x^(a) } \\ \\ ((x^(2))/(y^(3)) )^{ (1)/(5) } = \sqrt[5]{(x^(2))/(y^(3))}

User Isopach
by
7.4k points