126k views
5 votes
If (x-y)^2=71 and x^2+y^2=59 what is the value of xy?

User Baalrukh
by
8.2k points

1 Answer

5 votes
solve the equations
first one
take the sqrt of both sides
x-y=√71
add y to both sides
x=y+√71
sub y+√71 for x in other part


(y+√71)²+y²=59
y²+2y√71+71+y²=59
2y²+2y√71+71=59
minus 59 both sides
2y²+2y√71+12=0
factor out 2
2(y²+y√71+6)=0
use quadratic equation or something
y=
(- √(71)- √(47) )/(2) and
(- √(71)+ √(47) )/(2)

sub those for x

x=y+√71
note: √71=(2√71)/2

x=
(- √(71)- √(47) +2√(71))/(2) ,
(√(71)- √(47))/(2)
or
x=
(- √(71)+ √(47) +2√(71))/(2) ,
(√(71)+ √(47))/(2)

xy=
(√(71)- √(47))/(2) times
(-√(71)- √(47))/(2) or
(√(71)+ √(47))/(2) times
(-√(71)+ √(47))/(2)

the result is -6 both times

xy=-6
User Gashi
by
7.8k points

No related questions found