Answer:
Explanation:
Not an easy question to answer. If the rectangle is drawn inside the circle and all 4 vertices touch the circumference of the circle, then the diagonal of the rectangle = the diameter of the circle. You have to read this a couple of times to see what it is really saying.
Unfortunately, I have no way of saying what this represents.
In math terms
let the length of the rectangle inside the circle = L
Let the width of the rectangle inside the circle = W
Let the diagonal of the rectangle = D
D^2 = L^2 + W^2
D = sqrt(L^2 + W^2)
Radius = sqrt(L^2 + W^2)/2
Area of the circle = (pi) * r^2
Area of the circle = pi *(L^2 + W^2)/4