86.4k views
4 votes
How do you solve cos(pi/24) using Half-Angle formulas, and leaving in simplified form?

User Nwayve
by
8.2k points

1 Answer

1 vote

\cos (\theta)/(2)=\sqrt{(1+\cos \theta)/(2)} \\ \\ \cos{(\pi)/(24)}=\cos{((\pi)/(12))/(2)}=\sqrt{(1+\cos (\pi)/(12))/(2)}= \sqrt{ (1)/(2)+ (\cos (\pi)/(12))/(2) } \\ \\ \cos{(\pi)/(12)}=\cos{((\pi)/(6))/(2)}=\sqrt{(1+\cos (\pi)/(6))/(2)}= \sqrt{ (1)/(2)+ ( ( √(3) )/(2) )/(2) } =\sqrt{ (2)/(4)+ ( √(3) )/(4) } = \sqrt{( 2+√(3) )/(4) } = \\ \\ =\frac{ \sqrt{2+√(3)} }{2}


\cos{(\pi)/(24)}= \sqrt{ (1)/(2)+ (\cos (\pi)/(12))/(2) } = \sqrt{ (1)/(2)+ \frac{\frac{ \sqrt{2+√(3)} }{2}}{2} } = \sqrt{ (2)/(4)+ \frac{ \sqrt{2+√(3)} }{4}} } =\sqrt{ \frac{ 2+\sqrt{2+√(3)} }{4}} } \\ \\\cos{(\pi)/(24)}=\frac{\sqrt{2+\sqrt{2+√(3)}}} {2}


User Jcklie
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories