26.4k views
5 votes
What is the derivative of
y=(tanx)/(1+secx)

User David Maze
by
6.6k points

1 Answer

2 votes
first, the the derivative of y=lnA is y' = A' / A
let y=(tanx)/(1+secx), implies lny=ln [(tanx)/(1+secx)]

(lny)' =(ln [(tanx)/(1+secx)])' so y' /y = [(tanx)/(1+secx)])'/ (tanx)/(1+secx)
(tanx)/(1+secx)' =[(tanx)' (1+secx) - (tanx)(1+secx)'] / (1+secx)²

(tanx)' = 1 + tan²x and (1+secx)']= secx tanx (check lesson)

so
(tanx)/(1+secx)' = (1 + tan²x) (1+secx) - ( tan²xsecx ) / (1+secx)²
= (1 + secx +tan²x) / (1+secx)²
y' /y = [(tanx)/(1+secx)])'/ (tanx)/(1+secx)=

y' /y =[(1 + secx +tan²x) / (1+secx)² ] / (tanx)/(1+secx)
y' /y =(1 + secx +tan²x) (1+secx) / (tanx) (1+secx)²

so y' = y. [ (1 + secx +tan²x) (1+secx) / (tanx) (1+secx)² ]

but y=(tanx)/(1+secx),
y' = (tanx)/(1+secx) [ (1 + secx +tan²x) (1+secx) / (tanx) (1+secx)² ]

finally the derivative of (tanx)/(1+secx) is given by

y' = (1 + secx +tan²x)

User Aviendha
by
7.3k points