4.8k views
5 votes
Find the measure of angle P in the triangle below

Find the measure of angle P in the triangle below-example-1

2 Answers

3 votes

Answer:


\displaystyle 53°

Explanation:

We will be using the Law of Cosines to find the
\displaystyle m∠P, therefore we will use the given variables in the formulas:

Solving for Angles


\displaystyle (p^2 + q^2 - r^2)/(2pq) = cos∠R \\ (p^2 - q^2 + r^2)/(2pr) = cos∠Q \\ (-p^2 + q^2 + r^2)/(2qr) = cos∠P

**Use
\displaystyle cos^(-1) in your solution or it will be thrown off!

Solving for Sides


\displaystyle p^2 + q^2 - 2pq\:cos∠R = r^2 \\ p^2 + r^2 - 2pr\:cos∠Q = q^2 \\ q^2 + r^2 - 2qr\:cos∠P = p^2

**Perfourm the square root in your solution or it will be thrown off!

------------------------------------------------------------------------------------------


\displaystyle (-48^2 + 60^2 + 36^2)/(2[60][36]) = cos∠P → (-2304 + 3600 + 1296)/(4320) = cos∠P → (2592)/(4320) = cos∠P → (3)/(5) = cos∠P → 53,13010235° ≈ cos^(-1)\:(3)/(5) \\ \\ 53,13010235° ≈ m∠P → 53° ≈ m∠P

I am delighted to assist you at any time. ☺️

User Coffeduong
by
7.5k points
3 votes

60^2=48^2+36^2\Rightarrow \triangle{PQR} \text{ is a right triangle}\Rightarrow \angle{Q}=90^o


\sin{\angle{P}}= (48)/(60) =0.8 \\ \\\angle{P}=\arcsin{0.8}=53.13^o
User Katherine
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories