19.3k views
3 votes
Question:

Why can't a rational function have both, a horizontal and an oblique asymptote?

Could someone give a non-wikipedia answer?

Thanks

User DarRay
by
8.4k points

1 Answer

4 votes
Let f(x) = p(x)/q(x), where p and q are polynomials and reduced to lowest terms. (If p and q have a common factor, then they contribute removable discontinuities ('holes').)
Write this in cases:
(i) If deg p(x) ≤ deg q(x), then f(x) is a proper rational function, and lim(x→ ±∞) f(x) = constant.
If deg p(x) < deg q(x), then these limits equal 0, thus yielding the horizontal asymptote y = 0.
If deg p(x) = deg q(x), then these limits equal a/b, where a and b are the leading coefficients of p(x) and q(x), respectively. Hence, we have the horizontal asymptote y = a/b.
Note that there are no obliques asymptotes in this case. ------------- (ii) If deg p(x) > deg q(x), then f(x) is an improper rational function.
By long division, we can write f(x) = g(x) + r(x)/q(x), where g(x) and r(x) are polynomials and deg r(x) < deg q(x).
As in (i), note that lim(x→ ±∞) [f(x) - g(x)] = lim(x→ ±∞) r(x)/q(x) = 0. Hence, y = g(x) is an asymptote. (In particular, if deg g(x) = 1, then this is an oblique asymptote.)
This time, note that there are no horizontal asymptotes. ------------------ In summary, the degrees of p(x) and q(x) control which kind of asymptote we have.
I hope this helps!
User Sebastian Rieger
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories