190k views
3 votes
Solve the following using system of equations:
" x2 + y2 = 13
2x - y = 4
"

2 Answers

3 votes
One of the things you can do here is rearrange the equations like this:
x2 +y2 -13 = 0
y = 2x + 4
After that what you can do is substitute:
x2 + (2x + 4)2 -13 = 0
x2 + (4x2 +16x + 16) -13 = 0
5x2 +16x + 3 = 0
x = (-16 + sqrt(16^2 - 4*5*3))/(2*5) and (-16 - sqrt(16^2 - 4*5*3))/(2*5)
x = (-16 + 14)/10 and (-16 - 14)/10
x = -0.2 and -3

y = 2x + 4
y = 2*(-0.2) + 4 = 3.6
y = 2*(-3) + 4 = -2
The answer will be
(-0.2,3.6) and (-3,-2)
Hope this helps you greatly
User Beatrice Lin
by
7.7k points
4 votes

Answer: The value of (x,y)=(3,2) and


(x,y)=((1)/(5),(-18)/(5))

Explanation:

Since we have given that


x^2+y^2=13\\\\2x-y=4

From second equation i.e.


2x-y=4


\implies 2x-4=y

Put it in the first equation:


x^2+y^2=13\\\\x^2+(2x-4)^2=13\\\\x^2+4x^2+16-16x=13\\\\5x^2-16x+16=13\\\\5x^2-16x=13-16\\\\5x^2-16x=-3\\\\5x^2-16x+3=0


\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}\\\\x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)

So, we will apply this to get the roots:


\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}\\\\x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)\\\\=(16+√(\left(-16\right)^2-4\cdot \:5\cdot \:3))/(2\cdot \:5)=3\\\\(16-√(\left(-16\right)^2-4\cdot \:5\cdot \:3))/(2\cdot \:5)=(1)/(5)

Hence the value of x are


(1)/(5),2

Therefore, the value of y will be


y=2x-4

If we put
x=(1)/(5)


y=2* (1)/(5)-4\\\\y=(2)/(5)-4\\\\y=(-18)/(4)

If we put x=3

then


y=2x-4\\\\y=2* 3-4\\\\y=6-4\\\\y=2


User Gustavo Bezerra
by
8.1k points