154k views
5 votes
A cylinder has a volume of 320 pi cu. in. and a height of 5". Find the radius of the cylinder. ...?

User MucaP
by
8.0k points

2 Answers

1 vote
The volume of a cylinder can be calculated by the product of the area of the base times the height of the shape. It is expressed as follows:

V = πr²h

We calculate as follows:

320π in³= π (r²) (5 in)
64 in² = r²
r = 8 in

Hope this answers the question. Have a nice day.
User Muhamad Jafarnejad
by
8.3k points
6 votes

Answer:

radius of the cylinder is, 8 inches

Explanation:

Volume of cylinder(V) is given by:


V = \pi r^2h .....[1]

where,

r is the radius of the cylinder and

h is the height of the cylinder.

As per the statement:

A cylinder has a volume of 320 pi cu. in. and a height of 5"


V = 320 \pi cubic inches and h = 5 inches

Substitute these values in [1] we have


320 \pi = \pi r^2 \cdot 5

Simplify:


320 = r^2 \cdot 5

Divide both sides by 5 we have;


64=r^2

or


r^2 = 64


r = √(64) = 8 in

Therefore, the radius of the cylinder is, 8 inches

User Jeremy Fiel
by
8.4k points