126k views
3 votes
Simplify

sqrt(3 + 2 sqrt 2) ...?

User Yaoyao
by
8.2k points

2 Answers

3 votes

Answer:


1+√(2)

Explanation:

We have been given a radical expression
\sqrt{3+2√(2)}. We are asked to simplify the given expression.

We will add
(√(2))^2-2 to our given expression as after adding and subtracting same quantity the value of our expression will be same.


\sqrt{3+2√(2)+(√(2))^2-2}


\sqrt{3-2+2√(2)+(√(2))^2}


\sqrt{1+2√(2)+(√(2))^2}

Using perfect square formula
(a+b)^2=a^2+2ab+b^2 we can rewrite our expression as:


\sqrt{1^2+2√(2)\cdot 1+(√(2))^2}


\sqrt{(1+√(2))^2}

Applying radical rule
\sqrt[n]{x^n} =x, we will get,


(1+√(2))^{(2)/(2)}=1+√(2)

Therefore, the simplified form of our given expression would be
1+√(2).

User Matt Altepeter
by
8.3k points
1 vote
The answer is 1 + √2

sqrt(2) is
√(2)
sqrt(3 + 2 sqrt 2) is
\sqrt{3 +2 √(2) }
Now, let's simplify
\sqrt{3 +2 √(2) }.
We will use square of sum: (a + b)² = a² + 2ab + b²


\sqrt{3 +2 √(2) } = \sqrt{1+2+2 √(2) }= \sqrt{1+2 √(2)+2 }= \\ = \sqrt{1^(2) +2*1* √(2) + (√(2) ) ^(2) } = \sqrt{(1+ √(2)) ^(2)} =1+ √(2)
User Idunno
by
8.1k points