3.1k views
0 votes
How would we find the unit vector in the direction of v= i+j?

User Mecho
by
7.4k points

1 Answer

4 votes
The vector i=<1,0> and j=<0,1> so the i+j=<1+0,0+1>=<1,1>. The length of this vector is easy: |i+j|=2–√ to make the vector i+j=<1,1> a unit vector we rescale it by it's length (i.e. divide i+j by its length) , v=(i+j)/(|i+j|) thus we have v=1/2–√<1,1> or <1/2–√,1/2–√> If you check the length of this vector v, you see it indeed does have length =1. It is parallel to the vector i+j because it's components are proportional to the components of i+j=<1,1>.
User Marc Fischer
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories