190k views
2 votes
If tanh(x) =5/13 , find the value of the hyperbolic function of cosh(x) ...?

1 Answer

4 votes

\tanh(x)=(\sinh(x))/(\cosh(x))\rightarrow \sinh(x)=\cosh(x)\tanh(x)

Now,


\cosh^2(x)-\sinh^2(x)=1

so substituting for sinh(x):


\cosh^2(x)-\cosh^2(x)\tanh^2(x)=1\rightarrow \cosh^2(x)(1-\tanh^2(x))=1

which means


\cosh(x)=\pm\sqrt{(1)/(1-\tanh^2(x))}=\pm\sqrt{(1)/(1-((5)/(13))^2)}=\pm\sqrt{(1)/(1-(25)/(169))}=\pm\sqrt{(1)/((144)/(169))}= \pm(13)/(12) \\ \\
User Nalawala Murtaza
by
8.5k points