45.3k views
0 votes
Prove that
cos10 - sin10 / cos10 + sin10 = tan35

User Kdauria
by
7.8k points

2 Answers

2 votes
(cos(10º) -sin (10º))/(cos (10º) +sin (10º))=tan (35º)

1) tan x=sin x /cos x; then:

(cos 10º-sin 10º)/(cos 10º+sin 10º)=sin 35º / cos 35º
cos 35º(cos 10º-sin 10º) = sin 35º(cos 10º+sin 10º)
cos 35º cos 10º - cos 35º sin 10º=sin 35º cos 10º+sin 35º sin 10º
cos 35º cos 10º-sin 35º sin 10º=sin 35º cos 10º+cos 35º sin 10º

2)
cos (A+B)=cos A cos B-sin A sin B
cos (35º+10º)=cos 35ºcos 10º-sin 35ºsin 10º
cos (45º)=cos 35º cos 10º-sin 35º sin 10º

Sin (A+B)=sin A cos B+ sin B cos A
sin (35º+10º)=sin 35º cos 10º+cos 35ºsin 10º
sin (45º)=sin 35ºcos 10º+cos 35º sin 10º

Therefore:
cos (45º)=sin (45º)

Remember: sin (45º)=cos (45º)=√2 /2
User KrekkieD
by
8.3k points
2 votes
Assuming [cos(10)+sin(10)]/[cos(10) - sin(10)].

Taking
tan(55) = tan(45 + 10)
= [tan(45) + tan(10)]/[1 - tan(45)tan(10)]
= [1 + tan(10)] / [1 - tan(10)]

Now multiply all 4 terms by cos(10), and you get

[cos(10) + sin(10)]/[cos(10) - sin(10)].
User Jens Erat
by
8.1k points

Related questions

asked May 25, 2017 54.4k views
Casey Robinson asked May 25, 2017
by Casey Robinson
8.1k points
1 answer
4 votes
54.4k views
asked Feb 5, 2021 5.0k views
Nagesh asked Feb 5, 2021
by Nagesh
8.2k points
1 answer
3 votes
5.0k views
asked Jul 14, 2021 155k views
Jukurrpa asked Jul 14, 2021
by Jukurrpa
8.9k points
1 answer
0 votes
155k views