375,003 views
37 votes
37 votes
Determine the exact value of
\csc(0)when
\cot(0) = 3 / 4and
\cos(0) \ \textgreater \ 0

Determine the exact value of \csc(0)when \cot(0) = 3 / 4and \cos(0) \ \textgreater-example-1
User Jainender Chauhan
by
2.6k points

1 Answer

27 votes
27 votes

The cot(θ) is given by:


\cot (\theta)=(adjacent)/(opposite)=(3)/(4)

so:

The hypotenuse can be found using pythagorean theorem:


\begin{gathered} x=\sqrt[]{4^2+3^2} \\ x=\sqrt[]{25} \\ x=5 \end{gathered}

Therefore, the csc(θ) is given by:


\begin{gathered} \csc (\theta)=(hypotenuse)/(opposite) \\ so\colon \\ \csc (\theta)=(5)/(4) \end{gathered}

Determine the exact value of \csc(0)when \cot(0) = 3 / 4and \cos(0) \ \textgreater-example-1
User Veetaha
by
2.9k points