Answer:
The cube roots are



Explanation:
Given the expression 27(cos 330° + i sin 330°)
we have to find the cube roots of the above expression.
By Euler's formula,

We can write

![\sqrt[3]{27(cos{330^(\circ)}+isin{330^(\circ)})}\\\\=\sqrt[3]{3^3(cos{330^(\circ)}+isin{330^(\circ)})}\\\\=\sqrt[3]{3^3(e^(330i))}\\\\=\sqrt[3]{3^3(e^(110i*3))}\\\\=\sqrt[3]{(3e^(110i))^3}\\\\=3e^(110i)=3(cos{110^(\circ)}+isin{110^(\circ)})](https://img.qammunity.org/2017/formulas/mathematics/high-school/rzj2wi4qwxjkuvzex7qmq4de4j6wbaumch.png)
Since, 330°=360°+330°=690° and 330°=2(360°)+330°=1050°
Other two solutions are
and
