228k views
5 votes
Find the limit of sin(ax)/tan(bx) as x approaches 0.

User Dusker
by
8.3k points

1 Answer

2 votes

Answer:


\displaystyle \lim_(x \to 0) (\sin (ax))/(\tan (bx)) = 1

General Formulas and Concepts:

Pre-Calculus

  • Unit Circle

Calculus

Limits

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_(x \to c) x = c

Explanation:

Step 1: Define

Identify


\displaystyle \lim_(x \to 0) (\sin (ax))/(\tan (bx))

Step 2: Evaluate

  1. Rewrite limit:
    \displaystyle \lim_(x \to 0) (\sin (ax))/(\tan (bx)) = \lim_(x \to 0) (\sin (ax))/((\sin (ax))/(\cos (bx)))
  2. Simplify:
    \displaystyle \lim_(x \to 0) (\sin (ax))/(\tan (bx)) = \lim_(x \to 0) \cos (ax)
  3. Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_(x \to 0) (\sin (ax))/(\tan (bx)) = cos(0)
  4. Simplify:
    \displaystyle \lim_(x \to 0) (\sin (ax))/(\tan (bx)) = 1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

User Ashutosh Sharma
by
8.1k points