17.1k views
2 votes
The quotient of (x^3+3x^2-4x-12)/(x^2+5x+6)

User Carven
by
7.3k points

2 Answers

6 votes
x-2 ....................
User Imran Rasheed
by
7.8k points
7 votes

Answer: The quotient is (x-2).

Explanation:

Since we have given that


f(x)=(x^3+3x^2-4x-12)\\\\and\\\\g(x)=x^2+5x+6\\\\So,\ (\left(x^3+3x^2-4x-12\right))/(\left(x^2+5x+6\right))

Now, we have to find the quotient of the above expression.

So, here we go:


Factorise\ (x^3+3x^2-4x-12)\\\\=\left(x^3+3x^2\right)+\left(-4x-12\right)\\\\=-4\left(x+3\right)+x^2\left(x+3\right)\\\\=\left(x+3\right)\left(x^2-4\right)

Now, we will divide the above simplest form with g(x):


(\left(x+3\right)\left(x^2-4\right))/(\left(x+2\right)\left(x+3\right))\\\\=(x^2-4)/(x+2)\\\\=(\left(x+2\right)\left(x-2\right))/(x+2)\ using\ (a^2-b^2)=(a+b)(a-b)\\\\=x-2

Hence, the quotient is (x-2).


User Dan Mackinlay
by
8.7k points