301,892 views
38 votes
38 votes
Express the trig ratios as fractions in simplest terms.J1617IV33Ksin J =cos K =are equalare not equalsin J and cos K

Express the trig ratios as fractions in simplest terms.J1617IV33Ksin J =cos K =are-example-1
User Jeremythuff
by
3.2k points

1 Answer

7 votes
7 votes

The three basic trigonometric ratios for a specific angle θ are sine, cosine, and tangent:


\begin{gathered} \sin (\theta)=\frac{\text{ Opposite side}}{\text{ Hypotenuse}} \\ \cos (\theta)=\frac{\text{ Adjacent side}}{\text{ Hypotenuse}} \\ \tan (\theta)=\frac{\text{Opposite side}}{\text{Adjacent side}} \end{gathered}

So, in this case, we have:

First ratio


\begin{gathered} \theta=J \\ \text{ Opposite side }=\sqrt[]{33} \\ \text{ Hypotenuse }=17 \\ \sin (\theta)=\frac{\text{ Opposite side}}{\text{ Hypotenuse}} \\ $$\boldsymbol{\sin (J)=\frac{\sqrt[]{33}}{17}}$$ \end{gathered}

Second ratio


\begin{gathered} \theta=K \\ \text{ Adjacent side }=\sqrt[]{33} \\ \text{ Hypotenuse }=17 \\ \cos (\theta)=\frac{\text{ Adjacent side}}{\text{ Hypotenuse}} \\ $$\boldsymbol{\cos (K)=\frac{\sqrt[]{33}}{17}}$$ \end{gathered}

Finally, as we can see, sin(J) and cos(K) are equal.

Express the trig ratios as fractions in simplest terms.J1617IV33Ksin J =cos K =are-example-1
User Seveleven
by
2.9k points