139k views
3 votes
2x^2 -16x+30=0
solve the equation

1 Answer

1 vote
Divide by 2. You will have:

x^2-8x+15=0

First method:


x^2-8x+15=0 \\ x^2-8x=-15 \qquad \qquad /+16 \\ \underbrace{x^2-8x+16}_((x-4)^2)=-15+16 \\ \\ (x-4)^2=1 \qquad /\sqrt{} \\ |x-4|=1 \\ \hbox{From deefinition of value absolute:} \\ x_1-4=1 \qquad \hbox{and} \qquad x_2-4=-1 \\ \hbox{So solutions are:} \\ x_1=5 \\ x_2=3

Second method:


x^2-8x+15=0 \\ \Delta= (-8)^2 -4 \cdot 15 \cdot 1 = 64-60=4 \\ √(\Delta)=2 \\ \hbox{So solutions are:} \\ x_1=(8+2)/(2)=5 \\ x_2=(8-2)/(2)=3

Thirt method:


x^2-8x+15=0 \\ \hbox{See, that} \ \ -8x= -5x - 3x : \\ \underbrace{x^2-5x}_(x(x-5)) \underbrace{-3x+15}_(-3(x-5))=0 \\ \\ x(x-5)-3(x-5)=0 \\ \hbox{Factor out the} \ \ x-5: \\ (x-3)(x-5)=0 \\ \hbox{Each factor have to be zero, so:} \\ x-3=0 \\ x-5=0 \\ \hbox{So:} \\ x_1=3 \\ x_2 = 5

CHOOSE YOUR FAVOURITE METHOD! :)
User Larry Lv
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories