Answer:

General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2015/formulas/mathematics/high-school/2l408t9ucayob5xkw5dsfcngxuati592ud.png)
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2017/formulas/mathematics/high-school/9ehx61og91afh6dw2sn9c4cja5zo84z2d5.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]:
![\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://img.qammunity.org/2017/formulas/mathematics/college/dikzs03wqskd60dnckjk0orir7l5wq9o6l.png)
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2017/formulas/mathematics/high-school/5gyznprxgvpgbqhksqa20f0tupnkb4vxej.png)
Explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Derivative Rule [Product Rule]:
![\displaystyle y' = (d)/(dx)[\cos(x)] \sin(x) + \cos(x) (d)/(dx)[\sin(x)]](https://img.qammunity.org/2017/formulas/mathematics/college/9o98s0gchc50yhrnzqdrcq0bpd14ysmc2h.png)
- Trigonometric Differentiation:

- Derivative Property [Addition/Subtraction]:
![\displaystyle y' = (d)/(dx)[-\sin^2(x)] + (d)/(dx)[\cos^2(x)]](https://img.qammunity.org/2017/formulas/mathematics/college/6an32gyzmewuxhls4l4tjfuvn9lrfwvcgw.png)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle y' = -(d)/(dx)[\sin^2(x)] + (d)/(dx)[\cos^2(x)]](https://img.qammunity.org/2017/formulas/mathematics/college/z5zi4net307q3fu7przwrsvript575oaay.png)
- Basic Power Rule [Derivative Rule - Chain Rule]:
![\displaystyle y' = -2 \sin(x) (d)/(dx)[\sin(x)] + 2 \cos(x) (d)/(dx)[\cos(x)]](https://img.qammunity.org/2017/formulas/mathematics/college/hi8faabq05qjtij1gdabmtc682ty0vdfly.png)
- Trigonometric Differentiation:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation