213k views
0 votes
Which will result in a difference of squares? (–7x + 4)(–7x + 4) (–7x + 4)(4 – 7x) (–7x + 4)(–7x – 4) (–7x + 4)(7x – 4)

User Cortlendt
by
7.9k points

2 Answers

4 votes

Answer:

The expression which will result in difference of two squares is:

(–7x + 4)·(–7x – 4)

Explanation:

We know that the formula of the type:


(a-b).(a+b)=a^2-b^2

i.e. it is a difference of two square quantities. (a^2 and b^2)

Hence the option which satisfies the following expression is:

(-7x + 4)·(-7x-4)

since,

here
a=-7x and
b=4 and


(-7x+4).(-7x-4)=(-7x)^2-(4)^2=(7x)^2-4^2

so the expression is a difference of two square quantities:


(7x)^2 and
4^2

Hence, the correct answer is:

(-7x + 4)·(-7x-4)

User Sody
by
7.4k points
5 votes

You can simply expand each product and see whether it gives you a difference of squares.



\mathsf{(-7x+4)\cdot (-7x+4)}

That's actually
\mathsf{(-7x+4)^2:}


\mathsf{(-7x+4)^2}\\\\ \mathsf{=(-7x+4)\cdot (-7x+4)}\\\\ \mathsf{=(-7x+4)\cdot (-7x)+(-7x+4)\cdot 4}\\\\ \mathsf{=49x^2-28x-28x+16}


\mathsf{=49x^2-56x+16}

which is not a difference of squares.

————


\mathsf{(-7x+4)\cdot (4-7x)}


\mathsf{=(-7x+4)\cdot 4-(-7x+4)\cdot 7x}\\\\ \mathsf{=-28x+16-(-49x^2+28x)}\\\\ \mathsf{=-28x+16+49x^2-28x}


\mathsf{=49x^2-56x+16}

which is not a difference of squares.

—————


\mathsf{(-7x+4)\cdot (-7x-4)}


\mathsf{=(-7x+4)\cdot (-7x)-(-7x+4)\cdot 4}\\\\ \mathsf{=49x^2-28x-(-28x+16)}\\\\ \mathsf{=49x^2-\diagup\!\!\!\!\! 28x+\diagup\!\!\!\!\! 28x-16}\\\\ \mathsf{=49x^2-16}


\mathsf{=(7x)^2-4^2}

That is a difference of two squares.

————


\mathsf{(-7x+4)\cdot (7x-4)}


\mathsf{=(-7x+4)\cdot 7x-(-7x+4)\cdot 4)}\\\\ \mathsf{=-49x^2+28x-(-28x+16)}\\\\ \mathsf{=-49x^2+28x+28x-16}


\mathsf{=-49x^2+56x-16}

which is not a difference of squares.

—————

Only the third option will result in a difference of squares.


Answer: (− 7x + 4) · (− 7x − 4).


I hope this helps. =)

User Cercxtrova
by
8.4k points