97.8k views
2 votes
I WILL UPVOTE

Find the values of y =c(x)=^3√x for x = 0, 0.008, 0.027, 0.064, 0.125, 0.216, 0.343, 0.512, 0.729, and 1.

Then plot the corresponding points on a graph.

User JackU
by
7.8k points

2 Answers

4 votes

Explanation:

We are given a function as:


y=c(x)=\sqrt[3]{x}

We have to find the value of the function at different values of x:

1)

when x=0


y=\sqrt[3]{0}\\\\y=0

Hence, y=0

2)

when x=0.008


y=\sqrt[3]{0.008}\\\\y=\sqrt[3]{(0.2)^3}\\\\y=0.2

Hence y=0.2

3)

when x=0.027


y=\sqrt[3]{0.027}\\\\y=\sqrt[3]{(0.3)^3}\\\\y=0.3

Hence, y=0.3

4)

when x=0.064


y=\sqrt[3]{0.064}\\\\y=\sqrt[3]{(0.4)^3}\\\\y=0.4

Hence, y=0.4

5)

when x=0.125


y=\sqrt[3]{0.125}\\\\y=\sqrt[3]{(0.5)^3}\\\\y=0.5

Hence, y=0.5

6)

when x=0.216


y=\sqrt[3]{0.216}\\\\y=\sqrt[3]{(0.6)^3}\\\\y=0.6

Hence, y=0.6

7)

when x=0.343


y=\sqrt[3]{0.343}\\\\y=\sqrt[3]{(0.7)^3}\\\\y=0.7

Hence, y=0.7

8)

when x=0.512


y=\sqrt[3]{0.512}\\\\y=\sqrt[3]{(0.8)^3}\\\\y=0.8

Hence, y=0.8

9)

when x=0.729


y=\sqrt[3]{0.729}\\\\y=\sqrt[3]{(0.9)^3}\\\\y=0.9

Hence, y=0.9

10)

when x=1


y=\sqrt[3]{1}\\\\y=\sqrt[3]{(1)^3}\\\\y=1

Hence, y=1

I WILL UPVOTE Find the values of y =c(x)=^3√x for x = 0, 0.008, 0.027, 0.064, 0.125, 0.216, 0.343, 0.512, 0.729, and-example-1
User Varunpatil
by
8.1k points
3 votes

Given that y =c(x)=^3√x . solving for the value of y for x = 0, 0.008, 0.027, 0.064, 0.125, 0.216, 0.343, 0.512, 0.729, and 1. The value of y with its corresponding x are:

X y

0 0

0.008 0.2

0.027 0.3

0.064 0.4

0.125 0.5

0.216 0.6

0.343 0.7

0.512 0.8

0.729 0.9

1 1

User Santosh Jagtap
by
8.0k points