Answer:

General Formulas and Concepts:
Algebra I
Functions
Exponential Rule [Rewrite]:
Exponential Rule [Root Rewrite]:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2015/formulas/mathematics/high-school/2l408t9ucayob5xkw5dsfcngxuati592ud.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2017/formulas/mathematics/high-school/5gyznprxgvpgbqhksqa20f0tupnkb4vxej.png)
Trig Derivatives
Explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle f(x) = [cos(5x)]^\bigg{(1)/(2)}](https://img.qammunity.org/2017/formulas/mathematics/college/uud53h0n6tkufedz1puecsrlt4d0cbpi9o.png)
- Derivative Rule [Chain Rule]:
![\displaystyle f'(x) = (d)/(dx) \bigg[ [cos(5x)]^\bigg{(1)/(2)} \bigg] \cdot (d)/(dx)[cos(5x)] \cdot (d)/(dx)[5x]](https://img.qammunity.org/2017/formulas/mathematics/college/cbqwvu9f5mo788ulk8rpyk3o3f9wnewv3g.png)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle f'(x) = (d)/(dx) \bigg[ [cos(5x)]^\bigg{(1)/(2)} \bigg] \cdot (d)/(dx)[cos(5x)] \cdot 5(d)/(dx)[x]](https://img.qammunity.org/2017/formulas/mathematics/college/tw77dt9418y2mm43u27357cgks3ftykgfu.png)
- Basic Power Rule:
![\displaystyle f'(x) = (1)/(2)[cos(5x)]^\bigg{(1)/(2) - 1} \cdot (d)/(dx)[cos(5x)] \cdot 5x^(1 - 1)](https://img.qammunity.org/2017/formulas/mathematics/college/7bjorlhmxt0124j9wcmufjx1g70dm5rpdl.png)
- Simplify:
![\displaystyle f'(x) = (5)/(2)[cos(5x)]^\bigg{(-1)/(2)} \cdot (d)/(dx)[cos(5x)]](https://img.qammunity.org/2017/formulas/mathematics/college/k7uuuufw1zu8ve4960wbmsec1lr380qu9x.png)
- Trig Derivative:
![\displaystyle f'(x) = (5)/(2)[cos(5x)]^\bigg{(-1)/(2)} \cdot -sin(5x)](https://img.qammunity.org/2017/formulas/mathematics/college/wsdfqqjpp83ca65ijnjkgn5zbn0xsk51oq.png)
- Simplify:
![\displaystyle f'(x) = (-5sin(5x))/(2)[cos(5x)]^\bigg{(-1)/(2)}](https://img.qammunity.org/2017/formulas/mathematics/college/489uw0infmh3v7ft0z9w5vc8kskrtw3dn6.png)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle f'(x) = \frac{-5sin(5x)}{2[cos(5x)]^\bigg{(1)/(2)}}](https://img.qammunity.org/2017/formulas/mathematics/college/8wiq1yeh9ln8xcywc2ulprxql3qlco0h4i.png)
- Rewrite [Exponential Rule - Root Rewrite]:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e