87.2k views
3 votes
Chain Rule : Calculus problem

Find the derivative of
f(x) = sqrt[cos(5x)]
The answer is supposedly -5sin(5x)/2sqrtcos(5x)
How does one arrive at this answer?

1 Answer

3 votes

Answer:


\displaystyle f'(x) = (-5sin(5x))/(2√(cos(5x)))

General Formulas and Concepts:

Algebra I

Functions

  • Function Notation

Exponential Rule [Rewrite]:
\displaystyle b^(-m) = (1)/(b^m)

Exponential Rule [Root Rewrite]:
\displaystyle \sqrt[n]{x} = x^{(1)/(n)}

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Trig Derivatives

Explanation:

Step 1: Define

Identify


\displaystyle f(x) = √(cos(5x))

Step 2: Differentiate

  1. Rewrite [Exponential Rule - Root Rewrite]:
    \displaystyle f(x) = [cos(5x)]^\bigg{(1)/(2)}
  2. Derivative Rule [Chain Rule]:
    \displaystyle f'(x) = (d)/(dx) \bigg[ [cos(5x)]^\bigg{(1)/(2)} \bigg] \cdot (d)/(dx)[cos(5x)] \cdot (d)/(dx)[5x]
  3. Rewrite [Derivative Property - Multiplied Constant]:
    \displaystyle f'(x) = (d)/(dx) \bigg[ [cos(5x)]^\bigg{(1)/(2)} \bigg] \cdot (d)/(dx)[cos(5x)] \cdot 5(d)/(dx)[x]
  4. Basic Power Rule:
    \displaystyle f'(x) = (1)/(2)[cos(5x)]^\bigg{(1)/(2) - 1} \cdot (d)/(dx)[cos(5x)] \cdot 5x^(1 - 1)
  5. Simplify:
    \displaystyle f'(x) = (5)/(2)[cos(5x)]^\bigg{(-1)/(2)} \cdot (d)/(dx)[cos(5x)]
  6. Trig Derivative:
    \displaystyle f'(x) = (5)/(2)[cos(5x)]^\bigg{(-1)/(2)} \cdot -sin(5x)
  7. Simplify:
    \displaystyle f'(x) = (-5sin(5x))/(2)[cos(5x)]^\bigg{(-1)/(2)}
  8. Rewrite [Exponential Rule - Rewrite]:
    \displaystyle f'(x) = \frac{-5sin(5x)}{2[cos(5x)]^\bigg{(1)/(2)}}
  9. Rewrite [Exponential Rule - Root Rewrite]:
    \displaystyle f'(x) = (-5sin(5x))/(2√(cos(5x)))

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

User Eywu
by
7.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.