214k views
4 votes
Simplify 54x9 y7 .
A) 3x4 y3 6 B) 3x4 y3 6xy C) 9x4 y3 6xy D) 9x3 y3 6xy

User Ted Goas
by
8.4k points

2 Answers

6 votes

we have


\sqrt{54x^(9)y^(7)}

we know that


54=2*3^(3) =2*3*3^(2)\\ x^(9)= x^(8)*x \\ y^(7)=y^(6)*y

Substitute


\sqrt{(2*3*3^(2))*(x^(8)*x)*(y^(6)*y)}=[{(2*3*3^(2))*(x^(8)*x)*(y^(6)*y)}]^{(1)/(2)} \\ \\


={(2*3*3^(2))^{(1)/(2)}*(x^(8)*x)^{(1)/(2)}*(y^(6)*y)}^{(1)/(2)}


={(2*3)^{(1)/(2)}*(3^(2))^{(1)/(2)}*(x^(8))^{(1)/(2)}*(x)^{(1)/(2)}*(y^(6))^{(1)/(2)}*(y)}^{(1)/(2)}


={(2*3*x*y)^{(1)/(2)}*(3)*(x^(4))*(y^(3))


=3x^(4)y^(3)√(6xy)

therefore

the answer is


3x^(4)y^(3)√(6xy)

User John McTighe
by
8.1k points
6 votes

Simplify the square root of 54x^9y^7 or √(54x^9y^7)

54x^9y^7 = (3x^4y^3)^2 (6xy)

Now square root of (3x^4y^3)^2 = 3x^4y^3

So the final answer is 3x^4y^3 √(6xy)

Hence option “B” is correct.

User Altreus
by
8.4k points

Related questions

1 answer
0 votes
112k views
asked Oct 1, 2021 73.7k views
Jtrick asked Oct 1, 2021
by Jtrick
7.6k points
1 answer
1 vote
73.7k views