313,884 views
0 votes
0 votes
I think the answer is the first one.
(33 √(14) )/(2)am I right?

I think the answer is the first one. (33 √(14) )/(2)am I right?-example-1
User Anthony Dahanne
by
2.5k points

1 Answer

14 votes
14 votes

Given:


AB=11\sqrt[]{7}

Consider right triangle ABE.

Applying trigonometric property in triangle ABE,


\begin{gathered} \tan 60^(\circ)=\frac{opposite\text{ side }}{adjacent\text{ side}} \\ \tan 60^(\circ)=(AB)/(BE) \\ \sqrt[]{3}=\frac{11\sqrt[]{7}}{BE} \\ BE=\frac{11\sqrt[]{7}}{\sqrt[]{3}} \end{gathered}

Consider right triangle BED.

Applying trigonometric property in triangle BED,


\begin{gathered} \cos 45^(\circ)=\frac{adjacent\text{ side}}{hypotenuse} \\ \frac{1}{\sqrt[]{2}}=(BE)/(BD) \\ \frac{1}{\sqrt[]{2}}=\frac{\frac{11\sqrt[]{7}}{\sqrt[]{3}}}{BD} \\ BD=\frac{11\sqrt[]{7}*\sqrt[]{2}}{\sqrt[]{3}} \\ BD=\frac{11\sqrt[]{14}}{\sqrt[]{3}} \end{gathered}

Consider right triangle BDC. Applying trigonometric property in triangle BDC,


\begin{gathered} \tan 30^(\circ)=\frac{opposite\text{ side}}{\text{adjacent side}} \\ \frac{1}{\sqrt[]{3}}=(BD)/(CD) \\ \frac{1}{\sqrt[]{3}}=\frac{\frac{11\sqrt[]{14}}{\sqrt[]{3}}}{CD} \\ CD=11\sqrt[]{14} \end{gathered}

Therefore,


CD=11\sqrt[]{14}

User Gabriel M
by
2.9k points