7.4k views
0 votes
Find derivative of y = x^(lnx), Show step-by-step solution

User Pikoh
by
6.9k points

2 Answers

2 votes
x^ln(x)
=x^ln(x) * ln(x)*ln(x)
=(ln^2(x))*x^ln(x)
=2ln(x)*(ln(x)*x^ln(x))
=2x^ln(x)-1 * ln(x)
User SztupY
by
7.3k points
4 votes
y = x^(ln x ) / ln ( we will logarithm both sides of the equation )

ln y = ln x^(lnx) \\ ln y = ln x * ln x \\ ln y = ln ^(2) x \\ (1)/(y)y`= 2 ln x * (1)/(x) \\ y`= (2lnx)/(x)*y \\ y`= (2lnx*x ^(lnx) )/(x)

User Suhel Meman
by
7.5k points