183k views
4 votes
Suppose you have 100 grams of a radioisotope with a half-life of 100 years. How much of the isotope will you have after 200 years?

User Biegleux
by
7.5k points

2 Answers

1 vote
Amount Remaining Years #half lives
100g 0 0
50 g 100 1
25g 200 2




User Luqi
by
8.2k points
5 votes

Answer:

m = 25 g

Step-by-step explanation:

To do this, we need to use the general expression for Half life:

A = Ao e^-tλ (1)

Where:

A: concentration or mass of the substance after t time has passed

Ao: Initial concentration or mass of the substance

t: time that has passed.

λ: lambda that is relationed to half life time.

The value of λ can be calculated with the following expression:

λ = ln2 / t(1/2) (2)

So, let's calculate first the value of lambda, and then, we replace it in expression (1) to know the mass of the radioisotope:

λ = ln2/100

λ = 6.93x10^-3

Now, let's use (1) to calculate the mass after 200 years:

m = 100e^(-200*6.93x10^-3)

m = 100e^(-1.386)

m = 25 g

And this is the mass of the isotope after 200 years.

User Miloss
by
8.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.