134k views
0 votes
Determine whether each sequence appears to be an arithmetic sequence. If so find the common difference and the next 3 terms.

3.) 2.1, 1.4, 0.7, 0,...
4.) 1, 1, 2, 3...
5.) 0.1, 0.3, 0.9, 2.7...

User Isela
by
8.7k points

1 Answer

5 votes

a_n=a_1+(n-1)d\\\\a_1;\ a_2;\ a_3-first\ 3\ terms\ of\ arithmetic\ sequence,\ then\\\\a_2=(a_1+a_3)/(2)\\========================================\\3.)\\a_1=2.1;\ a_2=1.4;\ a_3=0.7\\\\(a_1+a_3)/(2)=(2.1+0.7)/(2)=(2.8)/(2)=1.4=a_2\ \ \ O.K. :)\\\\d=a_2-a_1\to d=1.4-2.1=-0.7\\\\a_4=0\to a_5=a_4+d\to a_5=0+(-0.7)=-0.7\\\\a_6=-0.7+(-0.7)=-1.4\\\\a_7=-1.4+(-0.7)=-2.1



4.)\\a_1=1;\ a_2=1;\ a_3=2;\ a_4=3\\\\(a_1+a_3)/(2)=(1+2)/(2)=(3)/(2)\\eq1=a_2-is\ not\ an\ arithmetic\ sequence



5.)\\a_1=0.1;\ a_2=0.3;\ a_3=0.9;\ a_4=2.7\\\\(a_1+a_3)/(2)=(0.1+0.9)/(2)=(1)/(2)\\eq0.3=a_2-is\ not\ an\ arithmetic\ sequence
User Davit Sargsyan
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories