Answer:

General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2015/formulas/mathematics/high-school/2l408t9ucayob5xkw5dsfcngxuati592ud.png)
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2017/formulas/mathematics/high-school/9ehx61og91afh6dw2sn9c4cja5zo84z2d5.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]:
![\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://img.qammunity.org/2017/formulas/mathematics/college/dikzs03wqskd60dnckjk0orir7l5wq9o6l.png)
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2017/formulas/mathematics/high-school/5gyznprxgvpgbqhksqa20f0tupnkb4vxej.png)
Explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Trigonometric Differentiation:

- Basic Power Rule [Derivative Rule - Chain Rule]:
![\displaystyle y'' = 2 \sec (x) \cdot (d)/(dx)[\sec (x)]](https://img.qammunity.org/2017/formulas/mathematics/high-school/ekk01n1nj0ue6y12kavtjdo8q8l6bo7k0s.png)
- Trigonometric Differentiation:

- Simplify:

- Derivative Rule [Product Rule]:
![\displaystyle y''' = (d)/(dx)[2 \sec^2 (x)] \tan (x) + 2 \sec^2 (x) (d)/(dx)[\tan (x)]](https://img.qammunity.org/2017/formulas/mathematics/high-school/fgtepbfzpe4pzxt862a06x42cecmpg2tq6.png)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle y''' = 2 (d)/(dx)[\sec^2 (x)] \tan (x) + 2 \sec^2 (x) (d)/(dx)[\tan (x)]](https://img.qammunity.org/2017/formulas/mathematics/high-school/dcyrby8cdywkc8wxir7rmhp78eyern9ofa.png)
- Trigonometric Differentiation:
![\displaystyle y''' = 2 (d)/(dx)[\sec^2 (x)] \tan (x) + 2 \sec^2 (x) \cdot \sec^2 (x)](https://img.qammunity.org/2017/formulas/mathematics/high-school/8116jexuo68b2enkzdklli3q5jrkbjvbk9.png)
- Basic Power Rule [Derivative Rule - Chain Rule]:
![\displaystyle y''' = 2 \big( 2 \sec (x) \big) (d)/(dx)[\sec (x)] \tan (x) + 2 \sec^2 (x) \cdot \sec^2 (x)](https://img.qammunity.org/2017/formulas/mathematics/high-school/rpxs66pp63oqgib41pq42z1tazbcwjsezi.png)
- Trigonometric Differentiation:

- Simplify:

- Factor:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation