171k views
1 vote
What is the third derivative of tan x?

User Elkvis
by
8.4k points

1 Answer

6 votes

Answer:


\displaystyle y''' = 2 \sec^2 (x) \bigg( 2\tan^2 (x) + \sec^2 (x) \bigg)

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Explanation:

Step 1: Define

Identify


\displaystyle y = \tan x

Step 2: Differentiate

  1. Trigonometric Differentiation:
    \displaystyle y' = \sec^2 (x)
  2. Basic Power Rule [Derivative Rule - Chain Rule]:
    \displaystyle y'' = 2 \sec (x) \cdot (d)/(dx)[\sec (x)]
  3. Trigonometric Differentiation:
    \displaystyle y'' = 2 \sec (x) \cdot \sec (x) \tan (x)
  4. Simplify:
    \displaystyle y'' = 2 \sec^2 (x) \tan (x)
  5. Derivative Rule [Product Rule]:
    \displaystyle y''' = (d)/(dx)[2 \sec^2 (x)] \tan (x) + 2 \sec^2 (x) (d)/(dx)[\tan (x)]
  6. Rewrite [Derivative Property - Multiplied Constant]:
    \displaystyle y''' = 2 (d)/(dx)[\sec^2 (x)] \tan (x) + 2 \sec^2 (x) (d)/(dx)[\tan (x)]
  7. Trigonometric Differentiation:
    \displaystyle y''' = 2 (d)/(dx)[\sec^2 (x)] \tan (x) + 2 \sec^2 (x) \cdot \sec^2 (x)
  8. Basic Power Rule [Derivative Rule - Chain Rule]:
    \displaystyle y''' = 2 \big( 2 \sec (x) \big) (d)/(dx)[\sec (x)] \tan (x) + 2 \sec^2 (x) \cdot \sec^2 (x)
  9. Trigonometric Differentiation:
    \displaystyle y''' = 2 \big( 2 \sec (x) \big) \big( \sec (x) \tan (x) \big) \tan (x) + 2 \sec^2 (x) \cdot \sec^2 (x)
  10. Simplify:
    \displaystyle y''' = 4 \sec^2 (x) \tan^2 (x) + 2 \sec^4 (x)
  11. Factor:
    \displaystyle y''' = 2 \sec^2 (x) \bigg( 2\tan^2 (x) + \sec^2 (x) \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

User Ayrosa
by
7.7k points

No related questions found