329,768 views
14 votes
14 votes
HS. Algebra 2A [M] (Prescriptive) (GP)11. Solve x4 + 3x2 - 4 = 0.*= tv2 or x = Eix = +2 or x =Ox = ti or x = 32x = +2i or x = +1

HS. Algebra 2A [M] (Prescriptive) (GP)11. Solve x4 + 3x2 - 4 = 0.*= tv2 or x = Eix-example-1
User Brad W
by
2.6k points

1 Answer

14 votes
14 votes

The given equation is,


x^4+3x^2-4=0\ldots\ldots.(1)

Let


y=x^2

Then, equation (1) becomes,


y^2+3y-4=0\ldots\ldots..(2)

The general form of a quadratic equation can be written as,


ay^2+by+c=0\ldots\ldots..(3)

Comparing equations (2) and (3), we get a=1, b=3 and c=-4.

Hence, the solution for equation (2) can be calculated using discriminant method as


\begin{gathered} y=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y=\frac{-3\pm\sqrt[]{3^2-4*1*(-4)}}{2*1} \\ y=\frac{-3\pm\sqrt[]{9+16}}{2} \\ y=\frac{-3\pm\sqrt[]{25}}{2} \\ y=(-3\pm5)/(2) \\ y=(-3+5)/(2)\text{ or y=}(-3-5)/(2) \\ y=(2)/(2)\text{ or }y=(-8)/(2) \\ y=1\text{ or }y=-4 \end{gathered}

We had defined y as,


x^2=y\ldots\ldots(4)

Put y=1 and y=-4 in the above equation to find the values of x.

Putting y=1,


\begin{gathered} x^2=1 \\ x=\pm\sqrt[]{1} \\ x=\pm1 \end{gathered}

Putting y=-4 in equation (4),


\begin{gathered} x^2=-4 \\ x=\pm\sqrt[]{-4} \\ x=\pm\sqrt[]{-1*4} \\ x=\pm2*\sqrt[]{-1} \\ As\text{ }\sqrt[]{-1}=i, \\ x=\pm2i \end{gathered}

User Maskacovnik
by
2.9k points